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Abstract Quantum polyhedra (QP) are geometrical constructs whose vertices are
made by quantum mechanical density functions (DF). In this paper a QP centroid
and a variance are defined at two levels: functional and numerical. The numerical QP
variance can be shown associated to a collective QP squared distance involving the
whole DF set composing the QP vertices. In this manner, a global dissimilarity index
corresponding to the set of QP vertices can be defined. Extension of the mathematical
and computational techniques developed on QP to shape functions polyhedra and to
classical descriptor N-dimensional multimolecular polyhedra, are also discussed.

Keywords Quantum object sets (QOS) · Quantum polyhedra (QP) · Quantum
similarity · Density functions (DF) · DF Origin Shifts · QP variance · Generalized
collective distances · Shape functions (ShF) ·Multimolecular polyhedra (MP)

1 Introduction

A quantum object set (QOS), see for example reference [1], can be constructed by
the Cartesian product: Q = M × P of a well-defined submicroscopic object set:
M = {m I |I = 1, N } and a tag set made by quantum density functions (DF): P =
{ρI |I = 1, N }.

Then, a quantum polyhedron (QP) can be defined in some functional vector space
as a geometrical construct, made by means of the tag set P of some QOS. The corre-
sponding cardinality of the QOS : N , is coincident with the number of vertices of the
QP.
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Recently, collective Euclidian distances have been studied [2,3] in connection with
quantum similarity theoretical foundations. Also, recent studies performed on the
similarity relations between the vertices of QP, provide the possibility to uniformize
any of such DF sets, acting as QP vertices, via an Origin Shift (OS) with respect any
vertex or convex linear combination of them [4]. Several publications describe, the
general features and properties of such an operation [5,6].

On the other hand, preliminary studies [8,9] have conducted towards the application
of the QP OS, which has been useful to set up an efficient quantum QSPR (QQSPR)
procedure [10]. Some interesting properties about QP OS have been obtained and
recently published [7].

Based on the above definitions and the previous literature, the aim of the present
work is the development of another set of characteristic properties related to QP and
their connection with straightforward statistical algorithms.

The main result of the present discussion can be resumed with a surprisingly simple
definition of a global dissimilarity index, related to a collective distance feature existing
within QP. A similar question constituted a must, which was initially discussed in sev-
eral previous papers [11–13], but taking into account a complete different perspective
than the one proposed here in the present study.

Owing to the above proposals, QP computational structures will be first studied
over origin shifted DF vertices, to be subsequently extended over shape functions
and finally to classically N-dimensional descriptor defined multimolecular polyhedra
(MP).

2 Quantum polyhedra characteristic functions

2.1 Centroid

The simpler and general convex linear combination of the vertices belonging to any
QP is the centroid, which can be directly expressed as:

ρC = N−1
∑

I

ρI . (1)

Such a trivial definition acts as an arithmetic mean of the involved DF set forming
the QP. As it has been said before, the centroid, among other applications, has been
employed to origin shifting QP for QQSPR purposes [10].

One must note now that the primary mathematical characteristic of the DF tag set
elements, acting as QP vertices, is essentially their positive definite nature. The cen-
troid definition (1) can be taken as a convex linear combination of the QP vertices,
where all the coefficients are equal to the inverse of the number of vertices. There-
fore, the centroid function inherits in this way the character of being positive definite.
Besides, the centroid function can be considered as the point in infinite dimensional
space, for which the sum of squared Euclidian distances to all the vertices is mini-
mal.
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2.2 Variance

Now, from such intuitive construction of the QP centroid, it is easy to design the
function equivalent to the variance attached to the elements of the QP, by means of
the expression:

υC = N−1
∑

I

(ρI − ρC )2 = ρ
(2)
C − ρ2

C , (2)

where the function,
ρ

(2)
C = N−1

∑

I

ρ2
I

represents the DF set squared elements centroid.

2.3 Some remarks

The expression (2) above coincides with the well-known algorithm attached to the
variance of a set of discrete scalar values, except that in this QP case, the involved
elements in the variance computation are themselves DF. Thus, defined in this way,
the QP variance also appears as a positive definite function.

As will be discussed later on, centroid and variance functions as previously defined
here, can produce at the end numerical values, which are obviously related with the
usual mean and variance of a set of values of a random variable, as they are usually
defined in statistical lore, but have not to be confused with them as in the present paper
the source are functions.

While the centroid can be associated to a central point within the QP, thus to some
kind of mean value, the numerical QP variance described below acquires the general
definition of some squared Euclidian distance involving an indefinite number of QO.

Both QP centroid and variance functions are attached to the same number of vari-
ables which forms the QP vertex DF set. They belong in this way to the same functional
vector space subtended by the DF set.

3 Numerical QP arithmetic mean and variance

In the same way as the pair of QP characteristic functions: {ρC ;υC } as above defined,
there seems also interesting to know the positive scalars provided by the Minkowski
norms of both.

3.1 Centroid Minkowski norm as an arithmetic mean

That is, in one hand the Minkowski norm of the centroid DF yields:

〈ρC 〉 = N−1
∑

I

〈ρI 〉 = N−1
∑

I

νI = νC , (3)

provided that the number of particles of every QO is described by the number set:
{νI |I = 1, N }. Thus, νC is the average number of particles involved in the DF of the
QO’s contained in the QOS, associated in turn with the QP vertices.
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When the QO’s are molecules, then νC corresponds to the average number of
electrons of all the involved structures attached to the DF set of vertices of the QP.

3.2 Minkowski norm of the variance as a collective QP index

On the other hand, the Minkowski norm of the QP variance, provides the sequence of
equalities:

〈υC 〉 =
〈
ρ

(2)
C

〉
−

〈
ρ2

C

〉

= N−1
∑

I

〈
ρ2

I

〉
− N−2

〈(
∑

I

ρI

)2〉

= N−1
∑

I

〈ρI ρI 〉 − N−2
∑

I

∑

J

〈ρI ρJ 〉

= N−1
∑

I

Z I I−N−2
∑

I

∑

J

Z I J

= N−1T r (Z)− N−2 〈Z〉 (4)

where use has been made of the similarity matrix Z definition, see for example [14–16],
attached to the DF vertex set forming the QP:

Z = {Z I J |I, J = 1, N } ← ∀I, J : Z I J = 〈ρI ρJ 〉 =
∫

D
ρI (r) ρJ (r) dr.

Moreover, as it is well-known, one can write:

T r (Z) =
∑

I

Z I I = 〈Diag (Z)〉.

Then, 〈υC 〉 the numerical variance of the QP, corresponds to the arithmetic mean
of the QOS self-similarities minus the arithmetic mean of the similarity matrix. By
definition one can certainly write: 〈υC 〉 ≥ 0.

The magnitude of this QP numeric variance will indicate the generic similarity-
dissimilarity between the whole QP vertices. In fact, taking into account that it can
be also defined: O f f diag(Z) = Z − Diag(Z), as the original similarity matrix but
provided with a zero diagonal. Also, due to the symmetric nature of the similarity
matrix, it can be used the algorithm:

〈O f f diag (Z)〉 = 2
∑

I

∑

J>I

Z I J .
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Therefore, the QP numerical variance can be also written as:

〈υC 〉 = N−1 〈Diag (Z)〉 − N−2 〈O f f diag (Z)+ Diag (Z)〉
= N−1

(
1− N−1

)
〈Diag (Z)〉 − N−2 〈O f f diag (Z)〉

From this result one can argue that the numerical value of the QP variance measures the
balance between self-similarities: {Z I I } and pair similarities: {Z I J |I �= J }, associated
with the different vertices of the QP.

Besides, as a consequence of the fact that the resultant numerical QP variance value
must be non-negative definite, a relationship can be written, which must be fulfilled
by any similarity matrix and which can be written as:

(
1− N−1

)
〈Diag (Z)〉 ≥ N−1 〈O f f diag (Z)〉

→ (N − 1) 〈Diag (Z)〉 ≥ 〈O f f diag (Z)〉

A value of 〈υC 〉 nearby zero will indicate a large similarity between the whole QP
vertex pairs. While larger the variance, greater the dissimilarity between the vertices.
That is: between the QO DF forming the QP.

4 Examples

It is worthwhile to discuss several simple examples in order to grasp the nature and
interest of the QP numerical variance.

4.1 Two QO case

In a QP just made by two QO, the similarity matrix and the variance can be written
with the general formalism:

Z =
(

α γ

γ β

)
→ 〈υC 〉 = 1

2

[
1

2
(α + β)− γ

]
← N = 2

It is obvious that a null variance value will coincide with the fact that both involved
QO are exactly the same and because in this case: α = β = γ . Moreover, in this
simple case nullity of the variance might also happen when: α + β = 2γ , though.
Also a greater value of the variance will be associated to the fact that the arithmetic
average of self-similarities becomes greater than the similarity between both QO, that
is, when the inequality: 1

2 (α + β) > γ , holds.
In general, this also precludes a new distance-like similarity index between any pair

of QO: {m I , m J }, say, as one can write in this circumstance the following expression:

〈υI J 〉 = 1

2

[
1

2
(Z I I + Z J J )− Z I J

]
.
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Written as above, this index can be compared with the squared Euclidian Distance
between a pair of QO, which could be written as:

D2
I J = Z I I + Z J J − 2Z I J .

Therefore, comparing both expressions it might be also written:

〈υI J 〉 = 1

4
D2

I J .

Resulting into that the generalized QP numeric variance will become a trivial scaled
Euclidian distance definition, when considering two QO only.

4.2 Three QO case

After the previous result for two QO, one must take into account that the numerical
variance of a QP structure can be extended to any number of QO. For instance, a set
of three QO will have the following numerical variance:

〈υI J K 〉 = 2

9
[(Z I I + Z J J + ZK K )− (Z I J + Z I K + Z J K )] ,

owing to the symmetric structure of the similarity matrix Z.
To have another particular point of view on how the multiple distance QP index will

behave, just suppose that the three QO are the same, then all the similarity integrals
will become equal and obviously 〈υI J K 〉 = 0.

Moreover, imagine now that only two QO are the same, for instance:

m I = m J → Z I I = Z J J = Z I J ∧ Z I K = Z J K

then

〈υI I K 〉 = 2

9
[(2Z I I + ZK K )− (Z I I + 2Z I K )]

= 2

9
[(Z I I + ZK K )− 2Z I K ] = 2

9
D2

I K =
2

9
D2

J K

providing a result coherent with the fact that only two different QO are present, and
obtaining an expression associated to the previous two QO case, where the numerical
variance corresponds to a scaled Euclidian distance.

4.3 Conclusion

At the light of the previous simpler examples it must be stressed again the fact that
such an index, defined over a similarity matrix Z, attached to the tag set of a QOS
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forming a QP, by means of the difference of two mean values involving the similarity
matrix elements:

〈υC 〉 = N−1T r (Z)− N−2 〈Z〉 , (5)

corresponds to a generalized squared Euclidian collective distance between any arbi-
trarily large number of QO.

5 Origin Shifted (OS) DF set and variance

The QP variance function definition can be also constructed in the following manner.
Take into account that in any QP it can be constructed an OS DF set in the following
way [4,5]:

∀I : ξI = ρI − ρC → S = {ξI |I = 1, N } .
Therefore, the QP variance can be now easily rewritten as the mean function of the
squares of the OS DF:

υC = N−1
∑

I

|ξI |2

and the previously performed numerical analysis can be effortlessly described as:

〈υC 〉 = N−1
∑

I

〈
|ξI |2

〉
.

Besides that, the Minkowski norms of the squared OS DF integrals averaged can
be interpreted as the Euclidian norms of the OS DF set S, as one can write:

∀I :
〈
|ξI |2

〉
=

∫

D
|ξI (r)|2dr = 〈ξI |ξI 〉 .

However, taking into account the definition of the OS DF set, the resultant final
expression can be transformed into the already deduced one.

Contrarily to the non-negative definite structure of the DF set, the OS DF elements
possess a non-definite structure, but obviously enough their squared modules behave
as a non-negative set of functions.

The role of the OS DF set S is important in the definition of an efficient algorithm
for QQSPR purposes [10].

6 Positive definite weighted variance

When variance is integrated in order to obtain a collective distance index, involving
the whole set of a QP vertices, as previously commented, its definition can be gener-
alized just weighting the involved integrals with a positive definite operator, see for
example [14–16]. This prospect might be easily made, for instance using the gener-
alized definition of the involved integrals employing some positive definite operator:
	(r1, r2),
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∀I :
〈
|ξI |2

〉
→

〈
	 |ξI |2

〉
≡

∫

D

∫

D
ξI (r1)	 (r1, r2) ξI (r2) dr1dr2.

Using this generalized definition, the variance of a QP and thus the generalized
distance between their vertices are easily set up.

7 Shape functions and QP variance

Another question might be the construction of a Shape QP (SQP). It can be easily
made starting with a set of shape functions (ShF) as vertices, substituting the QP DF
set of vertices.

The set of SQP vertices can be now described as the ShF set: 
 = {σI |I = 1, N }.
The ShF set can be straightforwardly obtained taking into account the number of
particles attached to every DF: {νI |I = 1, N } as defined in Eq. (3). Then, one can easily
write the ShF set as the set of function elements everyone having a unit Minkowski
norm. Such a set can be obtained from the DF tag set: P = {ρI |I = 1, N }, defined at
the beginning, in the following way:

∀I : σI = ν−1
I ρI → 〈σI 〉 = ν−1

I 〈ρI 〉 = ν−1
I νI = 1

Obviously enough, the centroid of the SQP will be defined in turn as the shape function:

σC = N−1
∑

I

σI → 〈σC 〉 = N−1
∑

I

〈σI 〉 = 1.

One can be interested on how different both QP and SQP centroid functions are.
For instance, the cosine of the angle between them can be easily computed, provided
that a N -dimensional (ND) column vector with the inverses of the number of particles,
like: |v〉 = {v−1

I } is defined, then the squared cosine between both centroids can be
written as:

r2 = 〈ρCσC 〉2
〈ρCρC 〉 〈σCσC 〉 =

(∑
I
∑

J ν−1
J Z I J

)2

(∑
I
∑

J Z I J
) (∑

I
∑

J ν−1
I ν−1

J Z I J

) = 〈Z |v〉〉2
〈Z〉 〈v|Z |v〉 .

From this result it is interesting to note that, as: r2 ≤ 1; then, the following inequality
will always hold:

〈Z |v〉〉2 ≤ 〈Z〉 〈v|Z |v〉 .
A squared Euclidian distance between both centroids can be also written as:

D2 = 〈ρCρC 〉 + 〈σCσC 〉 − 2 〈ρCσC 〉 = N−2 (〈Z〉 + 〈v|Z |v〉 − 2 〈Z |v〉〉)

which provides another relationship which holds for any similarity matrix:

〈Z〉 + 〈v|Z |v〉 ≥ 2 〈Z |v〉〉 .

123



J Math Chem (2015) 53:171–182 179

The associated variance function of any SQP can be written now in this context as:

υS = N−1
∑

I

(σI − σC )2 = N−1
∑

I

σ 2
I − σ 2

C = σ
(2)
C − σ 2

C (6)

where: σ
(2)
C = N−1∑

I σ
2
I .

The numerical SQP variance is easily written as the former DF one was, just obtain-
ing the Minkowski norm of Eq. (6):

〈υS〉 = N−1
∑

I

〈
σ 2

I

〉
− σ 2

C = N−1
∑

I

SI I − N−2
∑

I

∑

J

SI J (7)

where use is now made of the definition of the similarity shape matrix S = {SI J }:

∀I, J : SI J = 〈σI σJ 〉 =
∫

D
σI (r) σJ (r) dr,

which can also be written as the matrix inward product [16]:

S = |v〉 〈v| ∗Z.

Within such a definition one constructs first the tensor product:

|v〉 〈v| =
{

[|v〉 〈v|]I J = v−1
I v−1

J

}
,

then the inward product is simply performed as the products of the elements of the
involved matrices, in such a way that:

∀I, J : SI J = [|v〉 〈v|]I J Z I J = ν−1
I ν−1

J Z I J .

Therefore, the expression of the Eq. (7) result can be also written compactly as:

〈υS〉 = N−1T r (S)− N−2 〈S〉, (8)

which constitutes an equivalent result as the one obtained in the QP case. This equiv-
alence can be made self-evident, when comparing the Eq. (8) above with formerly
described Eq. (5).

The numerical squared Euclidian distance of the shape centroid and any vertex can
be written as:

∀I : D2
I C =

〈
(σI − σC )2

〉
=

〈
σ 2

I

〉
+

〈
σ 2

C

〉
− 2 〈σI σC 〉

= SI I + N−2 〈S〉 − N−1 〈|sI 〉〉

where {|sI 〉|I = 1, N } is the set of the columns of the shape similarity matrix S.
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8 Discrete multimolecular polyhedra or point clouds

Recently, some discussion has been associated to Multimolecular Polyhedra (MP) [7].
They are geometrical constructs whose vertices are made not with quantum mechanical
DF or the related ShF, but with discrete N-Dimensional (ND) vectors, constructed by
N ordered parameters. In previous papers, see for example [1], MP were also named
as point clouds.

The term MP is preferable than point cloud though, as it distinguishes quite clearly
those polyhedra from the subject of the present paper: QP, while all of them can be
considered as point clouds, as both MP and QP are related mathematical objects.

The relationship between them can be obtained easily from the similarity matrices
directly obtained from the DF or ShF vertices of QP or SQP respectively. Indeed, it has
been earlier discussed in several places [17,18] the role of the columns of similarity
matrices as projections associated to the QP functional vertex sets.

Even so, there is a large class of MP which do not need at all to have a quantum
molecular origin. This is the case of MP whose vertices are just defined classically
with ND vectors, whose elements are empirically and arbitrarily made with the so-
called molecular descriptors, which are parameters extracted from diverse origins,
even containing experimental values. In fact, any kind of MP, can be easily considered
as the basis of QSPR or QSAR, see for example [8].

A classical MP can be defined by means of a set of ND vectors: X = {|xI 〉|I = 1, N }
which act as vertices of the polyhedron. Then it is trivial to define the MP centroid
vector as:

|xC 〉 = N−1
∑

I

|xI 〉

but the variance vector, which could be equivalent to Eqs. (2) and (6) in the functional
QP or SQP spaces respectively, it is not so trivial to define. To do so, first the inward
product of two vectors, for more details see for example reference [16], shall be defined
in a similar manner as it has been done before with two matrices when dealing with
SQP variance:

|p〉 = |a〉 ∗ |b〉 → ∀I : pI = aI bI .

It is easy to see that the inward product is symmetric. Also, when considering
inward product of vectors, an interesting characteristic consists into the fact that the
sum of the elements of the inward product vector is coincident with the scalar product
of the involved vectors:

〈|p〉〉 =
∑

I

pI = 〈a∗b〉 =
∑

I

aI bI = 〈a|b〉.

With this in mind, one can write a variance vector of a MP, which will be equivalent
to the variance functions formerly described in QP. It is as simple as to write the
variance vector as a sum of inward products, by means of the expression:

|vX 〉 = N−1
∑

I

(|xI 〉 − |xC 〉)∗ (|xI 〉 − |xC 〉) =
∣∣∣x[2]

〉
− |xC 〉[2] . (9)
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Equation (9) is easily obtained taking into account that the inward product is also
distributive with respect vector addition. The supplementary definition has been also
employed: ∣∣∣x[2]

〉
= N−1

∑

I

(|xI 〉 ∗ |xI 〉) = N−1
∑

I

|xI 〉[2]

and accordingly one can also write:

|xC 〉[2] = |xC 〉 ∗ |xC 〉 .

Moreover, within MP the numerical variance might be written as the complete sum
of the elements of both terms appearing into the vector variance, as defined in Eq. (9),
that is:

vX = 〈|vX 〉〉 =
〈∣∣∣x[2]

〉〉
−

〈
|xC 〉[2]

〉
= N−1

∑

I

〈xI |xI 〉 − 〈xC |xC 〉

= N−1
∑

I

〈xI |xI 〉 − N−2
∑

I

∑

J

〈xI |xJ 〉.

Defining now the Gram matrix of the ND vertex set of the MP, as the ordered scalar
products of its vertices:

X = {X I J = 〈xI |xJ 〉} ,
then the numerical equivalent of the QP and SQP variances, as defined in Eqs. (4) and
(8), which can be now constructed in classical MP structures, can be written without
problems as:

vX = N−1T r (X)− N−2 〈X〉 .
Therefore, taking the Gram matrix of the MP vertices as a ND version of the

similarity matrices in DF or ShF spaces, all the considerations developed in the two
previous functional QP and SQP cases are applicable in discrete ND classical MP.

9 Discussion

A QP has been defined as a set of DF associated to a set of QO, taken for instance
as molecules. A simple definition of the vertex variance function of a QP leads to the
numerical evaluation of the QP numerical variance, which can be set up in terms of
the elements associated to any similarity matrix computed using the DF set.

It has been shown that such a QP numerical variance measures a global degree of
dissimilarity between the whole set of QP DF vertices. It can be considered in general
as a collective squared Euclidian distance between these QP vertices.

The same concept is valid in SQP, that is: QP defined over ShF instead of DF. Finally,
the coherence of the mathematical and computational procedures appears when one
realizes that the developed definitions and the derived algorithms, previously described
here for QP and SQP, are also easily extensible to MP. Taking into account that MP
are classical polyhedral structures made of ND discrete vectors, whose elements are
molecular descriptors of any origin.
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The whole set of results indicates that a collective distance can be in general easily
described in metric vector spaces.

It has not been discussed the QP nature of the MO components of the DF in LCAO
MO theory. It might be worth of a separate discussion, which will be done elsewhere.
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